Minimax Registration for Point Cloud Alignment

نویسندگان

چکیده

The alignment, or rigid registration, of three-dimensional (3D) point clouds plays an important role in many applications, such as robotics and computer vision. Recently, with the improvement high precision automated 3D scanners, registration algorithm has become critical a manufacturing setting for tolerance analysis, quality inspection, reverse engineering purposes. Most currently developed algorithms focus on aligning by minimizing average squared deviations. However, practices, especially those involving assembly multiple parts, envelope principle is widely used, which based minimax criteria. Our present work models minimization problem maximum deviation between two clouds, can be recast second-order cone program. Variants both pairwise registrations are discussed. We compared performance proposed other well-known algorithms, iterative closest partial Procrustes variety simulation studies scanned data. Case additive applications presented to demonstrate usage method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloud To Cloud Registration For 3d Point Data

Grant, Darion Shawn. Ph.D., Purdue University, December 2013. Cloud To Cloud Registration For 3D Point Data. Major Professors: James Bethel and Melba Crawford. The vast potential of digital representation of objects by large collections of 3D points is being recognized on a global scale and has given rise to the popularity of point cloud data (PCD). 3D imaging sensors provide a means for quickl...

متن کامل

Colored Point Cloud Registration Revisited Supplementary Material

As in Section 4.3, this objective is minimized using the Gauss-Newton method. Specifically, we start from an initial transformation T and perform optimization iteratively. In each iteration, we locally parameterize T with a 6-vector ξ, evaluate the residual r and Jacobian Jr at T, solve the linear system in (21) to compute ξ, and use ξ to update T. To compute the Jacobian, we need the partial d...

متن کامل

Hierarchical Registration Method for Airborne and Vehicle LiDAR Point Cloud

A new hierarchical method for the automatic registration of airborne and vehicle light detection and ranging (LiDAR) data is proposed, using three-dimensional (3D) road networks and 3D building contours. Firstly, 3D road networks are extracted from airborne LiDAR data and then registered with vehicle trajectory lines. During the registration of airborne road networks and vehicle trajectory line...

متن کامل

Guaranteed Outlier Removal for Point Cloud Registration with Correspondences

An established approach for 3D point cloud registration is to estimate the registration function from 3D keypoint correspondences. Typically, a robust technique is required to conduct the estimation, since there are false correspondences or outliers. Current 3D keypoint techniques are much less accurate than their 2D counterparts, thus they tend to produce extremely high outlier rates. A large ...

متن کامل

Challenging data sets for point cloud registration algorithms

The number of registration solutions in the literature has bloomed recently. The iterative closest point, for example, could be considered as the backbone of many laser-based localization and mapping systems. Although they are widely used, it is a common challenge to compare registration solutions on a fair base. The main limitation is to overcome the lack of accurate ground truth in current da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Manufacturing letters

سال: 2022

ISSN: ['2213-8463']

DOI: https://doi.org/10.1016/j.mfglet.2022.07.108